9-III-1. Уравнения, неравенства и их системы


Алгебра. 9 класс.  Задания к главе III.  Вариант 1.

1. Составить уравнения прямых (1) и (2), изображенных на рисунке и найти точку их пересечения.

A(1) x-y=-1; (2) x-3y=3; (-3; -2);   B) (1) x+y=1; (2) x-3y=1; (-3; -2);

C) (1) x-y=-1; (2) x-3y=3; (3; 2);     D) (1) x-y=-1; (2) x-3y=3; (-2; -3).

2. Решение какой системы неравенств изображено на рисунке?

3. Решить систему уравнений:

A) (4; -1);   B) (-1; 4), (4; -1);   C) (-1; 4);   D) (-2; 5), (4; -1).

4. Решить систему уравнений:

A) (-2; -3), (-3; -2);    B) (-2; 3), (3; -2);  

C) (2; -3), (-3; 2);      D) (2; -3), (3; -2).

5. В каких четвертях находятся точки, координаты которых служат решениями системы уравнений:

A) I и II;    B) II и III;   C) II и IV;    D) III и IV.

6. Найти значение параметра а, при котором будет иметь единственное решение система уравнений:

Aa=3;   B) a=-3;   C) a=4,5;   D) a=±3.

7. Один катет прямоугольного треугольника на 14 см больше другого, а гипотенуза равна 34 см. Найдите катеты и в ответе укажите их сумму.

A) 46;    B) 45;   C) 44;   D) 43.

8. Решить неравенство:

A) (1; 4); B) (-1; 4]; C) (1; 4]; D) [1; 4].

9. Решить неравенство: х(х-3)(х+4)(х-7)≤0.

A) [-4; 7]; B) [-4; 0]; C) [-4; 0]U[3; 7]; D) (-∞; -4]U[0; 3].

10. Записать сумму всех целых решений неравенства:

A) 19;  B) 20;  C) 21;  D) 22.

11. Решить систему неравенств и указать наименьшее целое решение.

A) 6;  B) 10;   C) -10;   D) -6.

12. Найти область определения функции:

A) [1,5; +∞); B) (1,5; +∞); C) [0; 1,5]; D) [1,5; 3].

Сверить ответы.